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Abstract. From a conceptual point of view, belief revision and miliar situations are more diverse again with for example knowledge
learning are quite similar. Both methods change the belief state ofepresentation techniques.
an intelligent agent by processing incoming information. However, Knowledge representation and belief revision techniques have the
for learning, the focus in on the exploitation of data to extract and asadvantage that the belief of the agent is represented quite clearly and
similate useful knowledge, whereas belief revision is more concernedllows reasoning about actions. The belief can be extended by new
with the adaption of prior beliefs to new information for the purposeinformation, but needs to be revised when the new information con-
of reasoning. In this paper, we propose a hybrid learning methodradicts the current belief. One drawback is that it is difficult to decide
called S’ HINX that combines low-level, non-cognitive reinforcement which parts of the belief should be given up, so that the new belief
learning with high-level epistemic belief revision, similar to human state is consistent, i.e., without inherent contradictions.
learning. The former represents knowledge in a sub-symbolic, nu- In this paper, we present our hybrid learning systeRHISX,
merical way, while the latter is based on symbolic, non-monotonicnamed after the Egyptian statue of a hybrid between a human and a
logics and allows reasoning. Beyond the theoretical appeal of linkindion. It combines the advantages of both Q-Learning and belief re-
methods of very different disciplines of artificial intelligence, we will vision and diminishes the disadvantages, thus synergy effects can
illustrate the usefulness of our approach by employingI8x in the emerge. 8HINX agents, on the one hand, are intelligent agents
area of computer vision for object recognition tasks. Tlreii8Xx equipped with epistemic belief states which allows them to build a
agent interacts with its environment by rotating objects dependingnodel of the world and to apply reasoning techniques to focus on
on past experiences and newly acquired generic knowledge to chooseost plausible actions. On the other hand, they use QTables to deter-
those views which are most advantageous for recognition. mine which action should be carried out next, and are able to process
reward signals from the environment. MoreovepHBIX agents can
learn situational as well as generic knowledge which is incorporated

1 INTRODUCTION into their epistemic states via belief revision. In this way, they are

. o .able to adjust faster and more thoroughly to the environment, and
One of the most challenging tasks of computer vision systems ig, jmprove their learning capabilites considerably. This will be illus-
the recognition of known and unknown objects. An elegant way 1Oy a1aq in detail by experiments in the field of computer vision.
achieve this is to show the system some samples of each object classpig haper is organized as follows: Chapter 2 summarizes related
and thereby train the system, so that it can recognize objects that {1 chapter 3 we recall basic facts on Q-Learning, ordinal con-
has not seen before, but which look similar to some objects of th@jiiona) functions and revision. Chapter 4 contains the main contri-
training phase (due to some defined features). bution of this paper, the presentation of the-8\x system. Chapter

Several methods to do so have been successfully used and anayls,mmarizes results from experiments in computer vision carried

ized. One of them is to set up a rule-based system and have it reasqf)y; in, gifferent environments. Finally, we conclude in chapter 6.
another one is to use numerical learning methods such as reinforce-

ment learning. Both of them have advantages, but also disadvantages.

Reinforcement learning yields good results in different kinds of en-2 RELATED WORK

vironments, but its training is time consuming, since it is a trial-and-

error method and the agent has to learn from scratch. The possibilRsychological findings propose a two-level learning model for hu-

ties to introduce background knowledge (e. g., by the choice of thenan learning [1], [6], [3], [10]. On the so called bottom level, hu-

initial values of the QTable) are more limited as for example with mans learrimplicitly and acquireproceduralknowledge. They are

knowledge representation techniques. Another disadvantage consistet awareof the relations they have learned and can hardly put it into

in a limited possibility to generalize experiences and so to be able twords. On the other level, the top level, humans leaplicitly and

act appropriately in unfamiliar situations. Though some generalizaacquiredeclarativeknowledge. They arawareof the relations they

tion can be obtained by the application of function approximizationhave learned and can express it, e. g., in form of if-then rules. A spe-

technigues, the possibilities to generalize from learned rules to unfesial form of declarative knowledge episodicknowledge. This kind

of knowledge is not of general nature, but referspecificevents,
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takes place and procedural knowledge is acquired. The declaratiwgork within a propositional framework, making use of multi-valued
knowledge is formed afterwards. This indicates that the bottom-ugpropositional variabled; with domains{v; 1, ..., v m, }. Possible
direction plays an important role. It is also advantageous to continworlds are simply interpretations here, assigning exactly one value
ually verbalize to a certain extent what one has just learned and s eachd;, and thus correspond to complete elementary conjunctions
speed up the acquisition of declarative knowledge and thereby thef multivalued literals(d; = v; ;), mentioning eachl;. Let Q be
whole learning process. the set of all possible worlds. Formally, ardinal conditional func-
Sun, Merrill and Peterson developed the learning model CLAR-tion (OCF)is a mappings : Q@ — N U {oco} with k=(0) # 0.
ION [9]. It is a two-level, bottom-up learning model which uses Q- The lowerx(w), the more plausible is, hence the most plausible
Learning for the bottom level and a set of rules for the top level.worlds havex-value0. A degree of plausibility can be assigned to
The rules have the form 'Premise Action’, where the premise can formulas A by settingx(A) := min{x(w) | w = A}, so that
be met by the current state signal of the environment. For the main<(A Vv B) = min{x(A), x(B)}. This means that a formula is con-
tainance of the set of rules (i. e., adding, changing and deleting rulesjdered as plausible as its most plausible models. Therefore, due to
the authors have conceived a certain technique. They have proverr'(0) # (, at least one ok(A), x(A) must be0. A proposition
their model, which works similar to human learning, to be successfuld is believed ifx(A) > 0 (which implies particularlys(A) = 0).
in a mine field navigation task and similar to human learning. Moreover, degrees of plausibility can also be assigned to conditionals
Cang Ye, N. H. C. Yung and Danwei Wang propose a neural fuzzyoy settingx(B|A) = k(AB) — k(A). A conditional (B|A) is ac-
system [2]. Like CLARION, this is a two-level learning model, com- cepted in the epistemic state represented byr « satisfies B|A),
bining reinforcement learning and fuzzy logic. The system has sucwritten asx = (B|A), iff kK(AB) < k(AB), i.e. iff AB is more

cessfully been applied to a mobile robot navigation task. plausible thamd B.
OCFs represent the epistemic attitudes of agents in quite a compre-
3 BASICS AND BACKGROUND hensible way and offer simple arithmetics to propagate information.

Therefore, they can be revised by new information in a straightfor-
In this section, we will recall basic facts on the two methodologiesward manner, making use of the idea of so-catiedvisiong4] that
that are used and combined in this paper. are capable of revising ranking functions even by sets of new con-

First, we briefly describe Q-Learning, a popular approach used fogitional beliefs. Here, we will only consider revisions by one condi-

solving Markov Decision Processes (MDPs) (see e.g. [12]). The scaional belief, so we will present the technique for this particular case.
nario is the usual one for agents, where one or more agents interact Given a prior epistemic state in the form of an O€&nd a new
with an environment. Normally, the environment starts in a state an@onditional belief( B|A), the revisions* =  x (B|A) is defined by
ends, when one terminal state is reached. This timespan is called an

episode. For each action, the agent is rewarded. The more reward it K (w) = { ko +r(w)+ A, IfwlE _AB, o
collects during an episode, the better. Episodes consist of steps in Ko + K(w) , otherwise

which the agent first perceives the current staté the environment
via a (humerical) state signal, e. g., an ID. It looks up in its memory,
called QTable, which action seems to be the best in this situation
and performs it. The environment reacts on this action by changin

wherer is a normalizing additive constant ands the least natural

number to ensure that"(AB) < x*(AB). Although c-revisions

ﬁ:e defined in [4] for logical languages defined from binary atoms,

its state tos’. After this change, the agent gets a rewartbr its € appr_oach can be easily generalized to _c9n5|der|ng rr_1u|t|-valued
propositional variables. Note that also c-revision by facts is covered,

Chg?iﬁgi%?ﬁ;ﬁﬂf Sn-l;]a;r:(e:é d O-Learning method that not onlyas facts are identified with degenerate conditionals with tautological
remises, i.ed = (A|T).

takes the expected rewards into account but also considers the staf? "OCFs and c-revisions provide a framework to carry out hiah qual-
action-pairs that have led to a statelLet Q(s,a) represent the P y 9na

sum of rewards the agent expects to receive until the end of théty belief revision meeting all standards which are known to date,

episode, if it performs action in situations, and letA(s) be the even going beyond that [4].

set of actions the agent can perform in state s. The update for-

mula for a state-action-pais, @) for Q()\)-learning isQ(3,a) := 4 THE SPHINX LEARNING METHOD
Q(5,a)+a-e(,a)-5, wheree(3, a) is an eligibility factor, express-
ing how much influence ofs, a) is conceded td3, a) (the longer
ago, the smaller the value), afid= r+a/rg1§(>§/> Q(s',a')—Q(s,a).

Similar to the cognitive model, our learning method consists of two
levels. For the bottom level we ugg(\)-Learning, and for the top
level, ordinal conditional functions (OCFs) are employed to repre-
Before updating thés, a)-values, the eligibility factor of the current sent the epistemic state of an agent and perform belief revision. This
state-action-pais, a) is increased by 1. After the update, the param- brings together two powerful methodologies from rather opposite

eter) is used to decrease thés, a)-values toe(s, a) := A - e(§, a). ends of the scale of cognitive complexity, meeting the challenge of
For A = 0, we get the basic Q-Learning approach. combining learning and belief revision in a particularly extreme case.
The decision which action to take in a situatiois usually done To combine belief revision and reinforcement learning, each

by choosing the one with the greatéX)ts, a)-value. To make the dis-  (subsymbolic) states is described by a logical formula from a
covery of new solutions possible, the agent chooses a random actidanguage defined over propositional variablés with domains
with a small probabilitye. {vi,1,...,vi,m; }. The symbolic representation of a specific state

Now, the concept of ordinal conditional functions (OCFs) andis a conjunction of literals mentioning all; and reflects the log-
appropriate revision techniques will be explained. OCFs will serveical perception ofs by the agent. Furthermore, we define a vari-
as representations of epistemic states of agents in this paper. Qable action having as domain the selctions of possible actions.
dinal conditional functions [7] are also called ranking functions, Hence, the possible worlds on which ranking functions are defined
as they assign a degree of plausibility in the form of a degree ohere correspond to elementary conjunctions of the fgdn =
disbelief, or surprise, respectively, to each possible world. We willv1 ;) A ... A (dn = Vnk,,) A (action = a).



better than others. This is done by a frequency based heuristics. For
each pattern (i.e., a conjunction of literalssmimeof the variables)
and each action, the agent remembers how oftenvas a best resp.

Environment Sphinx-Agent

State

*  numerical

[ ‘ i a poor action by using counters. If the agent finds in step 8, that an
5 . ‘ actiona is a best action iz and has not been among the best actions

State transifon functionlf] 4 before, then the counters farof all patterns covered by(s) are

\—1 a increased by 1. 1. was a best action im before but is no longer,

the counters are decreased by 1. Negative experiences wheas
E 5 a poor action are handled in an analogous manner. With these coun-
ters, probabilities can be calculated, expressingjsfusually a best

resp. a poor action, when a situatisrior which d(s) satisfiesp is
perceived.

If such a relation between a pattern and a set of actions is found,
a revision ofx with a conditional encoding such newly acquired
strategic knowledge is performed; basically, the following four
The SHINX system interlinks Q-learning, the epistemic state anddifferent types of revision occur:

belief revision in two ways: First, it uses current beliefs to restrict], Revision with information about a poor action in a specific state
the search space of actions for Q-Learning. Second, direct feedback (episodic knowledge).

to an action in the form of a reward is processed to acquire specifig. Revision with information about a poor action in several, similar
or generic symbolic knowledge from the most recent experience by states (generalization).

which the current epistemic state is revised. It is displayed in figurg_ Revision with information about best actions in a specific state

Figure 1. The SPHINX system

1 and works as follows: (episodic knowledge).
Algorithm 'Sphinx-Learning’: 4. Revision with information about best actions in several, similar
Whilethe current state is not a terminal state states (generalization).
1. The Sphinx agent perceives the signal of the stateming from A ’poor’_action in a sp_ecific state resp. in several, similar states
the environment and its logical descriptids). was defined as an action that yields a reward less than -1. The
2. The agent queries its current epistemic statevhich actions ~ conditionals used to revisehave the following forms:
A(s) ={a1,...,ax} are most plausible is. 1. (action= ald(s)), whered(s) is the symbolic representation of a

3. The agent looks up the Q-values of these actions and determines certain states in which a is poor.
the setdpes(s) C A, (s) of those actions im,, (s) that have the 2. (action= a|p), wherep is a pattern satisfied by(s), representing

greatest Q-value. a set of states, which are similar because they share a common
4. The agent chooses a random action Apesfs) and performs it. pattern.
5. The environment changes to the successor state. 3. (Vaction = a;|d(s)), where alla; are best actions (due to their
6. The agent receives the rewarérom the environment. Qi-values) ins.
7. The agent updates the Q_Tablg as des_crlbed in section 3. 4. (\/action = a;|p), where eacty is a best action in at leashe
8. The new Q-values for actions émare being read and the new best i

actions fors are determined. of the states covered by the patterna; needs not to be a best
9. The agent tries to find new rules that reldte) to best actions action inall states covered by.

(according to the updated QTable) and reviseswith this The last form of revision should exclude not best actions from being

information in form of conditionals. plausible whem is perceived, so the agent has to find the best action
End While for a specific state covered pyonly among the actions;.

Since revisions and especially revisions with generalized rules
We will now explain the algorithm step by step. When haye a strong influence on the choice of actions, they have to be han-
a states is perceived (step 1), them is browsed for the dled carefully, i. e., the agent should be quite sure about the correct-
most plausible worlds satisfyingl(s). A«(s) (step 2) is the ness of a rule before adding it to its belief. Therefore, the agent uses
set of actions occurring in the most plausibi&s)-worlds:  several counters counting, how often an action has been poor, not
Ax(s) = {a € Actions | k(d(s) A action = a) = k(d(s))} poor, a best or not a best one under certain circumstances. With these
Then, the actions im..(s) are filtered according to their Q-values counters some probabilities can be calculated which can be used to
(step 3), and one of these actions is carried out (step 4). It is pakyaluate the certainty about the correctness of a specific rule. How-
ticularly in these two steps that the enhancement of reinforcemendver, since all rules are merely plausible but not correct in a logical
learning with epistemic background pays out, since an ordinary Qsense, further revisions may alleviate or even cancel the effects of
Agent determines the set of best actions from the satlgiossible erroneously acquired rules.
actions. Steps 5 to 7 are pure Q-Learning. Our learning model also supports background knowledge. If the
In step 8, the best actions ferdue to the new Q-values are de- yser knows some rules that might be helpful for the agent and its
termined. This is done to exploit the experience by the received remsk, he can formulate them as conditionals and let the agent revise
ward for future situations and make it usable on the epistemic levelyith them before starting to learn.
in step 9. The operations performed in step 9 are quite complex and
described in the following. The aim of the mentioned revision: of 5 INTERACTIVE OBJECT RECOGNITION
is to make those actions most plausiblel(s) that have the greatest
Q-value ins. As inputs for this revision, the agent tries to find pat- We tested our learning method in a navigation environment and in
terns in the state descriptions for which certain actions are generallwo different simulations of object recognition environments. In this



paper, we present the results of the latter in two different scenarios. 100

90
< 80

5.1 Recognition of Geometric Objects ; 70
[

In this test environment, the agent has to learn to recognize the é 22

following objects: sphere, ellipsoid, cylinder, cone, tetrahedron, % 0

pyramid, prism, cube, cuboid. By interacting with the environment 2 5,

the agent can look at the object from the front, from the side or & o

from the top or it can choose to try to name the current object. 10

The possible front, side, and top views are represented by five 0 ; ‘ ‘ ‘ ‘ ‘ ‘ ‘

elementary shapes, namely: circle, ellipse, triangle, square, and 10 20 30 40 50 60 70 80 90 100

rectangle. For example, the cone has the front view 'triangle’, the Number of appearances per object

side view 'triangle’, and the top view ’circle’. The prism is given by Q) a5

the front view ’triangle’, the side view rectangle’, and the top view —&— Sphinx without background knowledge —<— Sphinx with background knowledge

‘rectangle’. This leads to the following domains for this environment:

e FrontView= {Unknown Circle, Ellipse, Triangle, Square Figure 2. Recognition Rates for Geometric Objects
Rectanglé

e SideView= {Unknown Circle, Ellipse, Triangle, Square
Rectangl¢ . ) . )

e TopView= {Unknown Circle, Ellipse, Triangle, Square c_hose ra_ndom objects anql describe them with thesg previously de-
Rectanglé fined attributes. These attributes are the input to Sphinx.

e Action= {LookAtFront LookAtSideLookAtTop Again, there are three possible perspectives: the front view, the
RecognizeUnknowRecognize SpherRecognizeEllipsoid side view, and a view from a position between these two views. The
RecognizeCylindeRecognizeCon&ecognizeTetrahedron decision for these persepectives, especially for the intermediate view,
RecognizePyramjdRecognizePrisnRecognizeCube was made based on the results found by [5] who revealed that the in-
RecognizeCuboid termediate view plays a special role in human object recognition. The

o ) ) front and the side view are described by three attributes each: approx-
A_t the beglnnl_ng of_each episode, the enwronment_chooses one of thg ate (idealized) shape, size (i.e. proportion) of the shape, and de-
nine geometric objects and generates the state sifr@itView = \j3nce from the idealized shape. The approximate shape can take on

Unknown,/\ SideView = UnknownA TopView = Unknown. If the valuesunknown, circle, square, triangle upndtriangle down
the agent's action isookAtFront LookAtSideresp.LOOkAtTOpthe  The size can banknown, flat, regularor tall. The deviance can be

FrontView, SideView resp.TopViewis revealed in the new state Sig- |iyje, medium or big. Besides these attributes the object is described

nal fc?llowing the agent's action. If the agent's action is an action ofy,y, the complexity of its texture. This attribute can take on the values
type 'Recognizeaction, the episode ends. , _ simple, mediumandcomplex We set the attributes for each object
The reward function returns -1, if one of theook actions has — anyally. In a real application they can be determined easily by a

been performed. Otherwise, the agent is rewarded with 10, if it hagjmpie image processing module which merely has to quantize the
recognized the objects correctly, and with -10, if not. After ten stepsshape and texture of an object.

the running episodg i.s forced to end. Figurg 2 shows the recognjtioq If the agent looks at the object from the front or the side, it
rates after each training phase. In each training phase, each objectjg cejves the matching idealized shape, its size, its deviance, and

shown ten times to the current agent. The values result from 100§, complexity of the texture. From the intermediate view the agent

independend agents. _ can only perceive the idealized shapes of the front and the side view
If the agents are provided with the background knowlelg® g the complexity of the texture, but not the size and deviances.
view has been perceived yet, then look at the front, the side, or the 98rmally the domains are:

of the objectwia the conditional action = LookAtFrontv action =
LookAtSideV action = LookAtTopFrontView = UnknownA  ® FrontViewShape= {Unknown Circle, Square TriangleUp
SideView= Unknowm TopView= Unknowr), the recognition rates ~ TriangleDowr}
improve, as can also be seen from figure 2. e FrontViewSize= {UnknownFlat, Regular Tall}

In the following, we list some of the rules that the agents learned® FrontViewDeviation= {UnknownLittle, Medium Much}
by exploring the effects of updating the QTables on the cognitive® SideViewShape: {Unknown Circle, Square TriangleUp
(i.e. logical) level: TriangleDowr}

SideViewSize- {Unknown Flat, Regular Tall
e |f FrontView= Circle, thena(_:tion = Rec_ognizeSphere : Side\ﬁewDeviaéon: {UnEnowr; Litﬁe, I\jlediu}m Much}
. E Frli)/r_::'\:ﬁewt: UnknownA SideView= Triangle thenaction = o Texture= {Simple Medium Comple3}
° Ifo?:ront\r;)gw = Triangle A SideView = Unknown then * Action= {Rotatel eftRotateRightRecognizeUnkow 1
action = RecognizePrism whereR is the set of Recognizeactions. At the beginning of each
episode, the agent looks at the current object from a random perspec-
5.2 Recognition of Simulated Real Objects tive and the variables are set according to this perspective. Now, the

agent can rotate the object clockwise or counter-clockwise or name
To analyse Sphinx under more realistic conditions, we set up anothét. If the agent’s action is aRecognizeaction, the episode ends. Af-
environment. We defined shape attributes that are suitable for reper ten steps the running episode is forced to end. The reward func-
resenting objects within a simple object recognition task and therion is the same as in the previous test environment. We have chosen

4



15 different objects from nine different object classes such as bottles If FrontViewShape= Circle A SideViewShape= UnknownA
tree, and house for which we provide the three attributes mentioned Texture= Simple thenaction = RotateLeft

(shape, size, and deviation) (see figure 3).

o If Texture= Complexthenaction = RecognizeBottle

What remains to be done at this point to apply our system to real im-

ages of objects, is the extraction of shape attributes from the images.
This can be done by existing segmentation methods.

6 CONCLUSION

Both low-level, non-cognitive learning and high-level learning with

Figure 3. Approximated geometrical forms of objects

using epistemic background and acquiring generic knowledge are

present in human learning processes. In this paper, we presented
the hybrid $HINX approach that enables intelligent agents to ad-
just to its environment in a similar way by combining epistemic-
Similar to the previous scenario, the experimental results obtaineased belief revision with experience-based reinforcement learning.
by testing 100 independend agents are depicted in Figure 4. AgaiVe linked both methodologies for two purposes: First, the current

it can be seen clearly that8INX-Learning does better thap(\)-
learning with respect to the speed of learning.

epistemic state allows the agent to focus on most plausible actions
that are evaluated by QTables to find the most promising actions in

some current state. Second, the direct feedback by the environment

100 4=

is used not only to update QTables, but also to generate specific or

0 B il generic knowledge with which the epistemic state is revised.
g & . In order to illustrate the usefulness of our approach, we described
< gg 2 application scenarios from computer vision and performed experi-
§ 50 ] ments in which 8HINX agents are employed for object recognition
2 40 tasks. The evaluation of these experiments shows clearly that the pro-
) 20 posed interplay of belief revision and reinforcement learning benefits
< .
£ 4 from the advantages of both methodologies. Therefore, tan
10 approach allows complex yet flexible interactions between learning
0 ‘ ‘ ‘ ‘ , ‘ ‘ ‘ and reasoning that help agents perform considerably better.
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